miR-33a Modulates ABCA1 Expression, Cholesterol Accumulation, and Insulin Secretion in Pancreatic Islets

نویسندگان

  • Nadeeja Wijesekara
  • Lin-hua Zhang
  • Martin H. Kang
  • Thomas Abraham
  • Alpana Bhattacharjee
  • Garth L. Warnock
  • C. Bruce Verchere
  • Michael R. Hayden
چکیده

Changes in cellular cholesterol affect insulin secretion, and β-cell-specific deletion or loss-of-function mutations in the cholesterol efflux transporter ATP-binding cassette transporter A1 (ABCA1) result in impaired glucose tolerance and β-cell dysfunction. Upregulation of ABCA1 expression may therefore be beneficial for the maintenance of normal islet function in diabetes. Studies suggest that microRNA-33a (miR-33a) expression inversely correlates with ABCA1 expression in hepatocytes and macrophages. We examined whether miR-33a regulates ABCA1 expression in pancreatic islets, thereby affecting cholesterol accumulation and insulin secretion. Adenoviral miR-33a overexpression in human or mouse islets reduced ABCA1 expression, decreased glucose-stimulated insulin secretion, and increased cholesterol levels. The miR-33a-induced reduction in insulin secretion was rescued by cholesterol depletion by methyl-β-cyclodextrin or mevastatin. Inhibition of miR-33a expression in apolipoprotein E knockout islets and ABCA1 overexpression in β-cell-specific ABCA1 knockout islets rescued normal insulin secretion and reduced islet cholesterol. These findings confirm the critical role of β-cell ABCA1 in islet cholesterol homeostasis and β-cell function and highlight modulation of β-cell miR-33a expression as a means to influence insulin secretion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of ABCA1 protein expression and function in hepatic and pancreatic islet cells by miR-145.

OBJECTIVE The ATP-binding cassette transporter A1 (ABCA1) protein maintains cellular cholesterol homeostasis in several different tissues. In the liver, ABCA1 is crucial for high-density lipoprotein biogenesis, and in the pancreas ABCA1 can regulate insulin secretion. In this study, our aim was to identify novel microRNAs that regulate ABCA1 expression in these tissues. APPROACH AND RESULTS W...

متن کامل

Effects of miR-33a-5P on ABCA1/G1-Mediated Cholesterol Efflux under Inflammatory Stress in THP-1 Macrophages

The present study is to investigate whether inflammatory cytokines inhibit ABCA1/ABCG1-mediated cholesterol efflux by regulating miR-33a-5P in THP-1 macrophages. We used interleukin-6 and tumor necrosis factor-alpha in the presence or absence of native low density lipoprotein (LDL) to stimulate THP-1 macrophages. THP-1 macrophages were infected by either control lentivirus vectors or lentivirus...

متن کامل

Nuclear receptors and microRNA-144 coordinately regulate cholesterol efflux.

P roper cholesterol homeostasis requires a complex network of sterol-sensing proteins, membrane dynamics, and extensive regulation of transcription, translation, posttranslation modifications, and protein turnover. Together, multilayered regulatory modules control 3 key processes to balance cellular cholesterol levels: de novo cholesterol biosynthesis, cholesterol uptake through lipoprotein rec...

متن کامل

The effect of ghrelin on Kiss-1 and KissR gene transcription and insulin secretion in rat islets of Langerhans and CRI-D2 cell line

Objective(s): Ghrelin is a peptide hormone that has been shown to have numerous central and peripheral effects. The central effects including GH secretion, food intake, and energy homeostasis are partly mediated by Kiss1- KissR signaling pathway. Ghrelin and its receptor are also expressed in the pancreatic islets. Ghrelin is one of the key metabolic factors controlling insulin secretion from t...

متن کامل

MicroRNA-33a regulates cholesterol synthesis and cholesterol efflux-related genes in osteoarthritic chondrocytes

INTRODUCTION Several studies have shown that osteoarthritis (OA) is strongly associated with metabolism-related disorders, highlighting OA as the fifth component of the metabolic syndrome (MetS). On the basis of our previous findings on dysregulation of cholesterol homeostasis in OA, we were prompted to investigate whether microRNA-33a (miR-33a), one of the master regulators of cholesterol and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 61  شماره 

صفحات  -

تاریخ انتشار 2012